Pioneering In Situ Recrystallization during Bead Milling: A Top-down Approach to Prepare Zeolite A Nanocrystals
نویسندگان
چکیده
Top-down approach has been viewed as an efficient and straightforward method to prepare nanosized zeolites. Yet, the mechanical breaking of zeolite causes amorphization, which usually requires a post-milling recrystallization to obtain fully crystalline nanoparticles. Herein we present a facile methodology to prepare zeolite nanocrystals, where milling and recrystallization can be performed in situ. A milling apparatus specially designed to work under conditions of high alkalinity and temperature enables the in situ recrystallization during milling. Taking zeolite A as an example, we demonstrate its size reduction from ~3 μm to 66 nm in 30 min, which is quite faster than previous methods reported. Three functions, viz., miniaturization, amorphization and recrystallization were found to take effect concurrently during this one-pot process. The dynamic balance between these three functions was achieved by adjusting the milling period and temperature, which lead to the tuning of zeolite A particle size. Particle size and crystallinity of the zeolite A nanocrystals were confirmed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and water adsorption-desorption. This work presents a pioneering advancement in this field of nanosized zeolites, and will facilitate the mass production as well as boost the wide applications of nanosized zeolites.
منابع مشابه
A top-down approach to prepare silicoaluminophosphate molecular sieve nanocrystals with improved catalytic activity.
Silicoaluminophosphate SAPO-34 molecular sieve nanocrystals have been prepared by a post-synthesis milling and recrystallization method, which is further proven to be universally applicable to other SAPO molecular sieves. The obtained SAPO-34 with reduced Si enrichment on the external surface shows considerably improved catalytic performance in the MTO reaction.
متن کاملA top-down methodology for ultrafast tuning of nanosized zeolites.
We herein present a top-down methodology to prepare nanosized zeolites with tunable size by combining post-synthesis milling and fast recrystallization of several minutes (10 min for SSZ-13 and 5 min for AlPO4-5). A continuous-flow recrystallization process is demonstrated to further enhance the overall product efficiency.
متن کاملCombinative Particle Size Reduction Technologies for the Production of Drug Nanocrystals.
Nanosizing is a suitable method to enhance the dissolution rate and therefore the bioavailability of poorly soluble drugs. The success of the particle size reduction processes depends on critical factors such as the employed technology, equipment, and drug physicochemical properties. High pressure homogenization and wet bead milling are standard comminution techniques that have been already emp...
متن کاملSynthesis of Size Distribution Controllable Zeolite Nanocrystals via a Novel Confined Space Strategy
A novel confined-space synthesis method has been developed to synthesize zeolite nanocrystals. Colloidal silica nanoparticles serving as the silica source as well as the hard template were embedded in the mesoporous carbon via in situ polymerization of furfuryl alcohol (FA) in the presence of tri-block copolymer (Pluronic P123), and then reacted with an alkaline aqueous solution (Na2O-Al2O3-H2O...
متن کاملA top-down technique to improve the solubility and bioavailability of aceclofenac: in vitro and in vivo studies
The aim of the present work was to tackle the solubility issue of a biopharmaceutics classification system (BCS)-II drug, aceclofenac. Although a number of attempts to increase the aqueous solubility have been made, none of the methods were taken up for scale-up. Hence size reduction technique by a top-down approach using wet milling process was utilized to improve the solubility and, consequen...
متن کامل